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Transitions and time scales to equipartition in oscillator chains: Low-frequency initial conditions
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We study the times to equipartitiol,, in an oscillator chain, which is the discretized Klein-Gordon
equation with a quartic nonlinearityo( system. The numerical results are compared to the Fermi-Pasta-Ulam
(FPU) oscillator chain with quartic nonlinearifrPU-38 system. For both chains we consider initial energies
in low-frequency modes, of the linear systems. The methods previously developed to estimate the equipartition
times for the FPUB chain are applied to the more complicatgtichain. The results indicate that the methods
are still applicable, but do not give as accurate predictions of the equipartition time or the transitions between
power-law and exponential behavior.
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[. INTRODUCTION servable times from those that are not observable. For the

FPU chain, the main mechanisms leading to equipartition in

Nonlinear oscillator chains are useful systems to study théhis lower-energy regime are that resonant interaction of four
foundations of statistical mechanics; in particular to deterlow-frequency modes, in which a significant portion of the

mine the transitions and time scales for relaxation from oneenergy resides, can lead to local superperiudry low-

or a few modes to equipartition among modes. Beginningrequency beat oscillations that are stochastic. If beat oscil-
with the famous Fermi-Pasta-UlatAPU) study[1,2] there lations, which increase with energy, are sufficiently fast they

have been many numerical and theoretical studies of thedgecome comparable to frequency differences between high-

phenomena. frequency modes. This results in the Arnold diffusion mecha-
The FPUB system is a linear chain of equal massesnism transferring energy to high-frequency modes.
coupled by nonlinear springs with Hamiltonidfor quartic For the FPUB chain the transition to stochastic local in-
nonlinearity teraction, using the four-mode approximation for low-
frequency modes, occurs [&]
N1 J:
H=2, 5pi+ 5 (@a=a)"+ Z(Ga—a) (@) P

6
R=(N+1)—E=1,
v

Typically, the energy interchange among the “linearized”
system modes for the case of strong springs>Q) and  whereR is the ratio of nonlinear to linear energy in a pertur-
either fixed boundariegg=qy.1=0 or periodicqo=0qn+1 bation Hamiltonian. SincRxN+ 1, the energy at which this
has been studiefB—-16]. To numerically study the FPU sys- transition occurs becomes vanishingly smallNis>o. The
tem, initial conditions have been used for which all the en-stochasticity atR=1 corresponds to the appearance of an
ergy is concentrated in a few modes usually around a lowelliptic-hyperbolic pair of fixed points in a low-frequency
frequency modey<<N or around a high-frequency modé  resonance among the modes. Since the driving frequency for
—y(y<N). diffusion is associated with the libration frequency of the
Numerical measures of the degree of energy sharingesonancelg, a fundamental time scale for numerical ob-
among modes have been developed and we present theservation i8]

measures, together with numerical results, in Sec. Ill. For
energy either in a few low-frequency modes or in a few 2—7T~——~N2/ E
high-frequency modes, we have developed theoretical de- Qg w, BE YBEy,

scriptions for energy spreading among modes, valid in vari-

ous energy ranges, which were compared to numerical revhere E,~E if most of the energy is initially in the few
sults [8—10]. In earlier works[5,6], the transition studied modes taking part of the beat oscillation, and we have ap-
was between weak and strong stochasticity, with differenproximated the linear mode frequency for FPU
power-law behavior in the two regimes. The numerically de-= 7 y/N. Using resonant normal form perturbation theory to
termined transition was related to a theory of overlap ofisolate the most important coupling to the high-frequency
neighboring modes in phase spaed. Subsequent work modes, we found that the energy transfer to high-frequency
[7-1Q) focused on the region of weak stochasticity with themodes is by Arnold diffusion, which depends exponentially
transition between power law and exponentially long timeon a frequency ratio as

scales as the energy densiy=E/N of the system is de-

creased. This latter transition is of more importance for the dE )

observation of equipartition, as it essentially separates ob- aMeXp(_mSW“/ZQB)’
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where éw,, is the difference frequency between two high- oscillators linearly coupled to each other. For a quartic non-
frequency modes. Wheflg~ dw,,, the exponential factor is linearity in the potential, the Hamiltonian is given py7]
of order unity, allowing strong diffusion of energy to high-
frequency_modes, and equipgrtition on compgtationally ob- 1, 1 m2 , 1,
servable time scales. Numerically, the transition to observ- H:_E Ep‘ + E(qi+l_Qi)2+ 7% + Zﬂqi , (3
able diffusion occurs at a value d&.~3, for 8=0.1, =1
corresponding tdl g/ dwp~0.3. Since the coupling involves
two high-frequency modes that initially have little energy, which we henceforth call the* system.
the resulting increase in energy is at first exponential, but Recently, there have been a number of studies of the dis-
later follows the usual diffusive scaling,9]. The scaling, cretized Klein-Gordon equation, but they have been from the
with energy density, of the equipartition time fBe>E, has ~ Perspective of studying the stability of breathers, which are
been found theoretically to bﬁeq“(N/E)3. which agrees chosen as initial cond|t|or[38,1q..l—_|c_)wever, itis clear.from.
with numerical computations. phase—spaqe arguments that an initial condition that is a high-
The low-frequency modes of the FPU system, o0 frequency linear mode, that subsequently forms breathers,
are approximately described by the modified7 Korte’wegcannot for_m stable brea_thers and therefore must ultimately
deVries(mKdV) equation. An instability of a low-frequency decay. This was recognized [43,14 for the FPU system
) : i and the processes of formation and decay were studied. An
soliton mode of the mKdV equation corresponds to the ex

. . ; . earlier study of thep* model compared numerical results of
ponential growth in the FPU systefil]. The instability on- 5 yansition from slow diffusiorflong times to approach eg-

set corresponds 8> 0.6, which is approximately the same \,ipartition) to fast diffusion (short times to equipartition
value as that which produced a separatrix layer in the localith numerical results from the FPU modgl7]. The only
resonance interaction. This is a necessary rather than suffheory at that time was for the energy required for mode
cient condition for a transition to equipartition, as the solitonover|ap[4], which does not consider the more subtle transi-
theory does not describe the high-frequency modes. Howtions and time scales, that occur at lower energy due to beat
ever, it does present a physical picture of the process thahodes and breather decay, as described above.
holds the low-frequency modes together in the absence of In this paper, we investigate the' system, comparing the
perturbationgcoupling to high-frequency modesThe pro-  numerical results to those of the FR3Jchain, using the
cesses that produce nonlinear structures become cruciddeory developed by us for the FPU studies, to understand
when considering initial conditions in which energy is placedthe similarities and differences. In particular, we will be con-
in high-frequency modes. cerned with the transitions between exponentially slow time

If the energy is initially placed in high-frequency modes, scales to approach equipartition and time scales governed by
the equipartition process is significantly different from thatpower laws. As with the FPU system, we calculate the en-
starting from low-frequency initial conditions. In this case, ergy density power-law scaling of the equipartition time and
the dynamics is transiently mediated by the formation ofcompare with numerical results. In this paper, we treat low-
unstable nonlinear structur¢$2-164. The mode energy is frequency initial conditiongLFIC). In a subsequent paper,
found to distribute itself first into a number of structures, we will consider high-frequency mode initial conditions. The
localized in space, each consisting of a few oscillators, whicttomparisons with our theoretical and numerical work on the
coalesce over time into a single localized structure, a chaotiEPU system should distinguish between transitions and time
breather(CB). Over longer times, the CB is found to break scales that are universal and those that are model dependent.
up, with energy transferred to lower-frequency modes which
do not have the breather symmetry. A transition with decreas-
ing initial mode frequency is found such that the CB does not Il. SOME THEORETICAL CONSIDERATIONS

form, as expected from the loss of breather symmetry. For A useful way of observing the dynamica| motion numeri-
the FPU-B chain, the scaling of CB formation time with cally, mentioned in the Introduction, is to Fourier transform
energy density E/N is found numerically to be the oscillator coordinates to the normal modes of a chain
T, (E/N) %, and the scaling of equipartition time found to containing only the linear restoring forces. This expansion
be Teqx(E/N) ™2 [14,16. The scaling ofT,, can be pre- describes the complete nonlinear system well, provided the
dicted from the argument which postulates stochastic diffuenergy in the linear terms is large compared to the energy in
sion from high-frequency mode chaotic beat oscillations tahe nonlinear terms. As we shall see, the transformation
the low-frequency modes, similar to that used for equipartiworks well over the interesting and numerically accessible
tion from low-frequency modes, given Q). The scaling of  energy ranges of the FPU chain, but has a much more limited
the time for the formation of a breatheF,, can also be range of validity for thep* chain. The harmonic part of the
estimated from theor{/15,16. Hamiltonian can be put in the form &f independent normal
The mechanisms leading to equipartition are now reasonmodesQ,, via a canonical transformation, which for fixed
ably understood for the FPU oscillator chain. However, aend-point boundary conditions gives
more complete understanding of the equipartition process re-
quires a comparison to other coupled nonlinear oscillators. A N
particular system, well suited to such a comparison, is the q= LE o) sin(
discretized Klein-Gordon equation, consisting of nonlinear ' N+1&; ¥

ik

N+1)’ @
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which holds for both Hamiltonian§l) and (3). The above
transformation puts the Hamiltonians in the form

N 1 ,8 N
N T p24u2A2
H—kzl Z(Pk+Wka)+ (8N18) i'j%zl
C(i,j,k,1NQiQ;QQy, )
with the w, given by
k
Wi = \/m2+4 sirf 2|:IT+2); (6)
for the ¢* system, and
) k
Wk=25|r( ONT2 (7)

for the FPU system. The quartic coefficients for thesys-
tem are given by

C(i,j,k,H=> B(i+j+k+l), (8)
P

with P representing the eight permutations of sign ,¢fk,|

PHYSICAL REVIEW E66, 026206 (2002

where ang(ijkl)=cos(#) cos(®;) cos(h) cosi). The fre-
quency of mode is the derivative of the Hamiltonian with
respect td;, giving

~ B )
Q,=w;+ m)]%l ang(ijkl)

. RE
L ClidkD) (IJlkh) _ (12)

\/WinWkW| I i

Equations(11) and (12) differ for the ¢* chain, from the
corresponding equations of the FPU chain, by the factor
(wiijkw|)*1. Thus, for smallw the nonlinear frequency
shift is much larger fok*. An estimate of the time average

of the nonlinear frequency shift can be made as follows.
Assuming that somék modes contain energy, and noticing
that the selection rule reduces the number of indices to be
summed by one, we find that there a@k)? terms that can
contribute to the above sum. After averaging over phases, the
only nonzero terms are those which have a resonance among
the four angles. The number of such resonances is linear in
Sk, such that only a group of terms proportionaldi actu-

ally contributes. Assuming that the terms are typically of the
same sizew;l;=E/ 8k, and thesk cancels. With these as-
sumptions and taking the;’s to have approximately equal

and the functiorB(x) takes the value 1 if the argument is values,sk<<N, then Eq.(12) yields

zero,—1 if the argument ist2(N+ 1), and zero otherwise.
In contrast, the coupling for the FPU has the form

C(i,j,k,l)zwiijkwlg B(i+j+k+1), (9)

i.e., the nonlinear terms get multiplied by the factor

WinWkW| .
From the above, it is apparent that the FPU and ¢fe

BE 1

NL™ N Ws’y,

(13

for the time average of the nonlinear frequency shift, whose
inverse defines an important time scale.

We now estimate the region of validity of the expansion
by comparing the linear frequenacy; to the shift in fre-
guency due to the nonlinearityw;y, . Since the nonlinear

models differ in some significant ways. In the linear frequen-shift depends on the frequencies of the coupled modes,

cies, there is an extra parametarin the ¢*model, which

which are approximated by their linear parts, the expressions

flattens the low-frequency portion of the dispersion relationare valid for dw;y /w;<<1. For an initial modey, Eqg. (13)
if mis of order one, while the FPU frequencies always starpredicts

with nearly linear increments from the valug = 7/N+1.

In the quartic terms, from E(9), we see that the terms in
the FPU model are multiplied by an extra product of four

frequencies, which is not present in thémodel. This causes

&/v'yNLN(ﬁ_E> (14)

1)4
w N J\w,/ "’

Y

the quartice* terms to be much larger for the low-frequency With v a typical mode in thesk packet of modes containing
modes than the corresponding low-frequency modes for théhe energy. This same approximation for the FPU yields
FPU system at the same energy density. To explore thedgore simply

differences in more detail, we transform to action-angle vari-

ables,l;,¢;, for the harmonic part, using
Qi=(21;/w;)*?cog ¢),

to obtain the Hamiltonian

Pi=(2w;l;)"?sin(¢;), (10)

sz Wi|i+
I

B .
—2N+2)i§,l ang(ijkl)

C(i,j.k,1)
X

VWi Wj W W,

(112 (11)

W N (15

e
s

The implications of Eqs(14) and(15) are quite different for
the two models. Fobw,, /w,<1, in the FPU-B system
implies thatBE/N<<1. This was assumed in all of our pre-
vious work[8—10]. For ¢*, on the other hand, the condition
depends explicitly on the the linear frequency range under
consideration. This difference was pointed out[17], but

the full implications were not explored. For<1 and a low-
frequency mode packety/N<1, the range of validity of
the normal mode analysis of thg* chain is much more
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restrictive. For example, witin=0.1 and7y/N~0.1 , a modes are excited. An alternative measure defines the effec-

case treated numerically, we filBE/N<4.0x 10 * for our  tive number of modes sharing energy [[8~10,14,16

expansions to be valid. This region is hard to reach numeri-

cally and may effect the comparison of numerics with ana- Netr=exp(S), (18

lytical estimates. This restriction is not severe for large val- . , o .

ues ofm, or for high frequencies where/, =2 (with m which behavgs well in the limits. The normallzgd' parameter

smal). Also, the calculations that we use to estim&gg may Netr=Ner/N is related tos, for a single mode initial con-

not depend critically on the validity of the expansion for the dition, through

initial conditions, because the energy may spread over a

| IN(N) —IN(Neff)

arger number of nearby modes. n=——
Continuing the argument for the* model, as developed In(N)

in [10] for the FPU model, we might expect that the beat

frequencyQg, which is driving the Arnold diffusion from Ve S€e thay—0 asne— 1, buty also becomes small &

the low frequency to other modes is related to the nonlineaP€COMes large, eventit; is significantly less than one. The
frequency shiftQg~ow,y, . This result was previously instantaneous value of.¢; does not asymptote to one, dl_Je to
found to hold for the FPU chain, with a numeric factor sig- fluctuations. To calculate the effect of flugtuatlons we intro-
nificantly less than ong8]. duce a deviatiorde; from equipartitione;=e+ de;. Substi-
tuting this into Eq(18), expanding the logarithm function as
In(1+ 8e /e)=de le— (1/2) (5e, /e)? and performing the sum-
mation overi yields

(19

III. NUMERICAL RESULTS

We present numerical results for tké oscillator chain,
with selective comparisons to previous FPU results. The
theory that is needed to understand these results, and com-
parison of theory with numerics will be presented in the fol- -
lowing section. =exp{—N(de)?/(2e)}. (20)
All of our numerical integrations were performed with a .
recently developed tenth-order symplectic Runge-KuttaTakinge=1/N and making the assumption of normal statis-
Nystrom integratof20], which is faster than previously used tjcs, that for each normal mode€)2=¢€? (this is confirmed
integrators. The high-order integrator can take very larggy calculationy we see tha cancels giving an asymptotic
steps, of about 0.6 of the shortest linear period and still conggjyen, ;= exp(~0.5)=0.61. This calculation shows that the
serves energy with a precision of 11§ even after integration  result does not depend on the number of oscillator i
times of 16°. large and also shows why the value is different from unity.
The same calculation can also be made for oscillators, calcu-
A. Macroscopic quantities lating the oscillator energi€es; directly from Eqs.(1) or (3)
normalizing as for modes, and then using the normalized
finear oscillator energies; in Eq. (16), one can calculate

neff=% exp{ —Neln(e) —N(5e)?/(2e)}

In numerical experiments, the instantaneous values of th
linear energiek;, of the linear modes, where tlig are the Nge. @S in Eq.(18), with ngo.=Noe/N. The resultingn,..

quadratic terms in(S), ! =1,... N, is usually calculated. =(0.61 at equipartition, from E¢20), which is the same as
Over short times, the instantaneous and average values are

nearly the same. The information entropy is defined by More accurate calculations have been made separately for

N modes and oscillators, including the nonlinear terms in the
S=—-> elne;, (16)  oscillator calculation, yielding16]
i=1
Nett=0.65, Nysc=0.74 (21

wheree;=E; /E{\'Ei are the normalized instantaneous ener- ) » )
gies. Two normalized measures of equipartition have beef! €quipartition. These values have been checked numeri-

employed. The first employed measurd5s-7,17 cally, giving good agreemerﬁllG]. Values of T, that have.
error bars are due to extrapolation or some other uncertainty.

S S() A comprehensive statistical analysis has not been performed
n= —max = (17 due to the very long times for some runs. Spot checks for a
Smax—S(0) few cases indicate that the spread from varying initial phases
is not large. We use a logarithmic scale for the increasing
where S,,=In(N) (equipartition. We see from the above time, in natural units of Eq3). The large fluctuations of the
definition that =1 when S(t)=S(0) and »—0 as S(t) instantaneous values are smoothed by taking the average of
— Shax, although fluctuations limity to some finite value the last five instantaneous valuesmgf;, which are evalu-
[15]. For N large and the initial energy in a few modes, ated at a rate of 25 points per decade in t[imieevery integer
does not distinguish between equipartition and a plateau imalue of 25In{)].
which only some small number of tiémodes are occupied, We are now in a position to numerically determine the
but is well behaved if some fixed fraction of ti initial time scale to equipartition. However, before doing this it is
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FIG. 1. ForN=128, m=0.1, ande=E/N=0.05, no(t) and FIG. 2. T¢q vs e=E/N on log-log scales withm=0.1N=128

Nosdt), showing the saturation at=Teq with ne=0.65 andn,s,  (Stars, N=64 (squarey indicating power-law behavior indepen-
=0.75. The timet is in natural units and the initial number of dent ofN except at smale. Comparison with Refl17] (plusses,
modes 2}/:8, unless Specified otherwise. comparison with FPUN=128 (Crosse}‘, N=500 (trlangles).

useful to find the most appropriate presentation of our date@nly- Howeverne(t) takes somewhat different paths to eg-
We concentrate our attention on teé chain, but will also  Uipartition, indicating that there afs-dependent transients.
compareg* results to FPU results. In Fig. 1, taking a con- From the values of ¢4 for N=64, at the lower values of,
venient case with3=0.1, N=128, m=0.1, ande=E/N  We see that th&=64 points break away from thd=128

—0.05, we placed equal energies with random phases in tHePints to larger values ofq with decreasing:. This behav-
lowest eight modes and plot the valuesngf; andn,... For  1or was found for the FPU, and for that system was under-
varying N values, we can either choose a fixed fraction ofStood in terms of a critical value of energy for which the
modes as initial conditions, or a fixed number of modesfransition occurs. If the value . is the same for ani{, as
whichever we find to better eliminate initial transients. Welt is in the FPU system, then the value ©f at which the
have chosem;,;=8, unless otherwise specified. In Fig. 1, fransition takes place would vary inversely withand there-
the initial value ofne=8/128 is maintained for a short fore occur at a factor of 2 higher for N=64 than forN
time, then rises continuously, and finally fluctuates about the= 128. On the same figure, we plot valuesTef, for the FPU
equipartition value ofngs=0.65. Similarly n,g., starting
from a higher value since many oscillators have initial en- 10” . . -
ergy, also rises continuously to somewhat above the equipar
tition value ofn,~0.74, then settles back at essentially the
same time as.ss reaches 0.65. The time to equipartition 49 | = *
(first crossing ofngtt=0.65) is Teq=2X 10%. In a similar
manner, with the sami and y, we plot T, versuse on a o ¥
log-log plot in Fig. 2(starg. We use this presentation be- s *
cause, from our experience with the FPU chain, we expect ¢
power-law functionT,,<e ~9, over some parameter range, ¥ 0y
which we indeed find. We note two distinct power laws, one \
at lower values of with g~2.5 and one at highes with 0
g~1.5.
The slope becomes steeper at the lowest values, of I
which corresponds to a transition to exponential behavior, as 10 [
found for the FPU chain. We will see this exponential varia-
tion, using another presentation, in Fig. 3. But first, on the
same figure, with a particular value ef=0.05 andN/16 102 . . .
initial modes, we indicatél., for N=64 (squares These 0.0 2000.0 4000.0 6000.0 8000.0
values lie close to those value fiir=128, agreeing with our Ve
expectations, as found for the FPU chain, that, given a fixed FIG. 3. T,,on log scale vs % to illustrate exponential behavior
coefficient for the nonlinear terml.q is a function ofe, at smalle: N=128 (star3, N=64 (squares
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chain for N=128 (crosses and N=500 (triangles. These SW 2BE N
results are similar to extrapolations from Fig. 5[0]. The AL .
slope hagy~3, as is also found theoretically in that paper. Wy m?m? (2y+1)
We see that a considerably largeis required to obtain the

sameT,,. This can be understood qualitatively in terms of As in the FPU[8], from LFIC local overlap is obtained, at
the larger nonlinearity at low frequencies for thé system fixed vy, proportional toBEN and will generally occur at
than for the FPU system. The results for the FPU with highN, even for smalj3E. This leads to a rapid spreading of
=500, show that over the principal slope, the valuagf is the energy over some set of low-frequency modes. However,
intensive, i.e., not a function df separately frome=E/N.  as also seen with the FPU, this does not imply equipartition
Similarly, we calculated a few values @t (¢) for the ¢* ~ on power-law times, as diffusion to high-frequency modes
with N=256,500,1000, and 200@not shown which lay ~ may be strongly impeded. In fact, the valuessofor which
close to theN=128 values in the figure. Finally, we com- equipartition is observed are much higher for this case. A
pared our results to values @t reported in Fig. 7 of17], ~ typical result is shown in Fig. 4, fo£=0.75, in which we

at the samen value of 0.1, but with slightly differenil and ~ Plot nes(t) andngys(t). We find a plateau img(t) is rap-
initial conditions(plusses The values lie significantly below idly obtained. However, this macroscopic calculation does
our observed values, particularly at the smaller values.of hot tell us which modes contain the energy. The slower pro-
We interpret this difference as at least partly due to the use dgesses that can transport energy to high-frequency modes

7, in [17], rather thamg¢, for determiningTq, as we have only man_ifest Fhemselves on.a'r'nuch Ionger time scgle. How-
discussed above. ever, unlike high-frequency initial conditions, in which the

In Fig. 3, we plotT., on a log scale versusel/starg for intermediate time scale indicates the formation of transient
all & values withN=128. If we are in the range in which the localized structureg14-16, here, no such structures are
diffusion is exponentially slowArnold diffusion), then from ~ formed, as seen fromys(t), which does not drop to a low
the scaling in Eq(2), with éw;,/QgxE ! we expect to ob- value on the intermediate time scalthe indication of
tain a straight line for logl,y) versus 1¢ if N is held con- ~ breather formation
stant. This is, indeed, found for four of the values, with a In Fig. 5, we plotT, versuse on log-log scales fom
transition betweerr=10"3 and 5x10 4. ForN=128 and =1 andN=128 (pluse$ and to confirm the: scaling, also
5x 10 4<e<10"3, we have 0.0614 E<0.128. This value Plot Teq versuse for m=1 andN=256 (starg. The close
is more than a factor of ten lower than the valueEQf=3 coincidence indicates that thescaling holds. There is also
found for the FPU chain. In Fig. 3, we also plstjuaresthe  time spent on the plateau, before rising toward equipartition.
values ofe for N=64. As in Fig. 2, we see the transition We also checked the plateau times, again finding the coinci-
from exponentiall, versus 1¢ to power-law behavior, with ~dénce. There is no induction period for sufficiently laige
the transition occurring at a factor of 2 largeta factor of 2 The disappearance of a transient state with increasiing
smaller value of ¥ in the figure. also seen for high-frequency initial conditions in the FPU

We have also calculateT,, with N=128, form=0.025  System[14,16. .
and m=0, for a few values of: on the main slope. The Either because the dynamic rangesois smaller and the
values ofT,,, fall on curves below that fom=0.1, and with points somewhat more varied, or because a transition has not
different sloqpes, as might be expected from E8). For m been reached, there is no clear indication of a change from a
=0.1, the linear frequency is affected by both the Coup"ngpower-law to exponential behavior. There is also a distinct
term, and the linear self-forcing term. For cases in which wethange of the slope of log{) versus log¢) at aboute
want the linear self-forcing term to be small, but sufficiently =1.5- This type of transition with increasing has been
large to prevent largeN problems, we have taken=0.1, as observed for smalin [17] and for the FPU5,6] and inter-
was also used ifil7]. preted in those references as the onset of a strong overlap

If we takem=0(1), thesituation is considerably differ- condition[4]. The .Iack of a cIe_ar transition between power-
ent. For this case, the linear frequency for low-frequency@WV and exponential behavior is made more apparent by plot-
modes is dominated by the term includimgand the disper- ting Teq Versus 1¢, on log-linear scale, in Fig. 6. We see that
sion is quite different. This is seen from the frequencies irPver the range ok that was accessible, there is no clear
Eq. (6). The expansion procedure for the perturbed frequenSeparation between exponential and power-law behavior.
cies given by Eq(12) is now valid to high energy. Although A rfcent numerical study of the scaling t_o nghbnum in
the nonlinear frequency shift is small compared to the lineathe ¢* system was made over roughly similar values of
frequencies, for low-frequency initial conditions, the differ- 0-03=BE=0.25 but at much smaller values ef since N
ences between linear frequencies are small so that local ovefas largeltypically N=8192)[21]. In that study, using vari-
lap is easily achieved. This is easily seen by expanding an@us methods of estimating the time to equilibrium, but not

taking the difference for neighboring modes to obtain measuringTq as done here, the conclusion was drawn that
the equilibrium time increased exponentially as[€gE) 7]

o 72 with y~0.3. This would be consistent with our general ex-
OW = _<m) (2y+1) (22) pectations of exponential times, at these low values,ds
we found for smalim.
We also must check the scaling ©f, with m. From our
and estimating the nonlinear frequency shift as in @4) previous results using the FPU chain, we expect that a fun-

(23
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10° |

. 10°

0.0
10°

FIG. 4. ng¢4(t) andnygt) for N=128, m=1, £=0.75 giving

10°

10° 10° 0.0

Teqatngs=0.65, but also showing an induction period on a plateau

of ng¢s. The timet is in natural units.

damental time scale i§lg. From Eq.(13) assumingQg
Wy, with m primarily determining the low-frequency
mode frequencies, we might expect to obtaim?® scaling,
but the theory does not give this value. In Fig. 7, we {lg}
versuse/m?’® for various values ofn; in particular form
=1 (circles, m=0.75 (star3, m=0.5 (crosses and m

20 40 6.0
1/e

FIG. 6. T¢q 0n log scale vs ¥, for N=128, m=1.

8.0

on a log-log scale oh.¢ versuse/m?, finding (e/m?)*?
scaling, where the power ofiwas chosen to bring the values

of m close to a universal curve. There is a significant devia-
tion of thee scaling at smalh.¢s which is getting closer to
the initial valueng¢;=0.062.
In all the above numerics, we have used eight initial low-
frequency modes, with an implicit assumption tfigt, does
not significantly depend on the number of initial modes,

=0.25 (triangles. We see that these values fit reasonablywhich mainly effects short-time transients. This is not en-

well on a single curve, with the power afi chosen to give
the best fit. The scaling of the plateau heighi{(p) with &
and m can also be obtained from the same plotsngf;

tirely true, as we find a weak dependencd gf on the initial
conditions. The height of the plateau, which is established
early in time, depends more significantly on the initial con-

versust used to obtain Fig. 7. We present the data in Fig. 8ditions. We illustrate this in Fig. 9, with the results from two

10" : 10" r
+
10° ¢ 1 10° | 1
+
+
10° | + E 10° | A g’po E
X
J * =y x
I 0
7 7 Ay
10" b . 5 10 | *xA ]
+ £
* x
+ A
10° ¢ * 1 10° | N 1
*
+ ¥ o) 0
+ o
10° ' 10° L
10 10° 10' 10™ 10° 10
Py gm2.76

FIG. 5. T¢q vs € on log-log scales wittm=1: N=128 (plus-

1

FIG. 7. Fitting Teq to e/m*”® on log-log scales fom=1

seg; N=256 (starg; showing power-law behavior over a limited (circles, m=0.75 (star3, m=0.5 (crossey and m=0.25 (tri-

range ofe.

angles$. Fitting to e/m® gives almost as good a fit.
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10° T

0.0}

107 L
10 10 10
e/m?
FIG. 8. Fittingn.¢s (plateal to e/m? on log-log scales, fom
=2 (circles, m=1 (plussey m=0.75 (starg, and m=0.5
(crosses

very different initial conditions;y=3 andy=18, for a typi-
cal case oim=0.5, ande =0.06. We findn.¢;(p) separated
by a factor of about 3, while the values ©f, are nearly the
same. We also found for a few valuesmt-1, that there is
increasing deviations from the scaling asm is increased
(but not thee scaling from that given in Fig. 7.

The comparison of ¢, from ¢* with the the results from
FPU show that for the sanmik, the ¢* values of are gen-
erally more than a factor of 4 smaller than the FPWalues

PHYSICAL REVIEW E 66, 026206 (2002

107

FIG. 10. lllustrating that for high-frequency initial conditions
the value ofT¢q vs € for the ¢* chain can be brought into coinci-
dence with the FPU chain by choosigg= 1.6 rather than3=0.1,
with the factor of 16 understood for from the strength of the non-
linear term at high-frequencies* (diamond$; FPU (crossey ¢*
with 8=1.6 (plusses

frequency modes. In Fig. 10, these results are compared to
the T from the FPU model fronj14]. We see the opposite
characteristics from those in Fig. 2, withlarger by approxi-
mately a factor of 4 in the* system(diamonds than in the
FPU system(crosseg for the sameT. This result can be
explained by comparing the forms of the nonlinear terms in

(Fig. 2). Although we are not studying high-frequency initial the two systems. For HFIC, the phases of neighboring oscil-
conditions(HFIC) in this paper, we have measured values ofj5iqrs aiternate, and thus a quartic term is a factor of 16

Teq When the energy is initially placed in a few high-

0'8 T T T
06 - .
504 .
[ =4
5y=18
02} i
5y=3
0.0 1 1 1
10° 10° 10* 10° 10°

FIG. 9. Indicating the effect of initial conditions ofig, and
Nest(P), with m=0.5 ande =0.062, for two initial conditions with

larger for the FPU system, than for the system, which
corresponds to a factor of 4 larger energy. This interpretation
has been confirmed by increasiBgoy a factor of 16 forp?*,
bringing theT,, values in close correspondence with those
from the FPU systenfplusses From LFIC, the situation is
reversed, with the nonlinear forces much smaller in the FPU
system than in the* system[The large spread in the quoted
Teq for two points in Fig. 10 is due to an early peaking of
Nne¢1(t)=0.65, after which the value fell back and then
climbed again to its final oscillation abong¢(t) =0.65. The
upper times are probably more reliable, and lie close to the
FPU value$

As we can see by comparing tfig, in Fig. 5 form=1
with the values fom=0.1, in Fig. 2, the values of required
to obtain a giverT,, are orders of magnitude higher for
=1 than for smallm. Although there is strong overlap of
modes at low frequency, fan=1, the ratio of the nonlinear
frequency shift of a mode to the linear frequency of the mode
is much smaller fom=1 than for smalm. The values of the
linear frequencies fom= 1 are the same order of magnitude
as the values of the linear high frequencies for amand we
observe, by comparing the results of Fig. 5 with Fig. 10, that
the values ofe for LFIC at m=1, required to produce a

8y=3 and 8y=18. For these cases, there is little effect of initial given T, are quite similar to the values ef for HFIC for

conditions onT,, but a rather strong effect am,¢+(p).

any m.
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0.1 . ‘ - \ TABLE I. Nonlinear frequency shifts.
m=0.1
005 | € owpy (num) ownL(w) OWnL(Wn)
3.0x10* 0.014 0.016 0.012
1.0x10°3 0.033 0.053 0.026
g 0 3.0x10°3 0.064 0.158 0.045
1.0x10°2 0.112 0.525 0.076
m=1
-0.05 € owy(num) owni(w) oWnL(Wni)
0.25 0.08 0.025 0.025
0.5 0.14 0.05 0.05
-0.1 . . . . 1.0 0.19 0.1 0.1
0 200 400 600 800 1000
(@) t
0.4 . . ; . tween numerics and simple theory where it appliesti-

mated ate<4.10 %), but gives too large values afwy,

when the nonlinear change of the frequency is significant

compared to the linear frequency. An estimate using a non-

linear frequency can be made by solvingwy,

= BEINW}, , and is given in the last column. For=0.1, it

is better but lacks full theoretical justification. Beat oscilla-

tions are also observed, with additional harmonics, but are

difficult to interpret. For the case ofi=0(1), thedifficulty

in the expansions do not exist for most valuespfind we

would expect to obtain reasonably good agreement. How-

ever, as we see in the second half of the table, the theory

considerably underestimates the observed nonlinear fre-

guency shifts, and it is not understood.

-04 : : : : Another important microscopic quantity is the mode spec-
0 200 400 600 800 1000 . . . . .

(b) t trum. This gives information as to how energy is transferred

among modes to produce the macroscopig. To illustrate

this we compare the mode spectrum for the case shown in

Fig. 1, withm=0.1 ande =0.05 atn.;=0.25, in Fig. 12a)

to spectra for the cases of Fig. 4 with=1 ande=0.75, in

Figs. 12b) and 12c), for two times near the beginning and

B. Microscopic quantities near the end of the of the plateau, respectively, withy

=(0.25 at both times. Since the energy on average is spread

To understand the underlying physics, we need to IOOkamong 32 modes (0.25128), the mean energy mode is 16.
more closely at the numerical evolution of more microscopicIn Fig. 12a), we find the peék energy near this mode, with

guantities. To investigate the validity of the apprOXimationsconsiderable spreading above it. In contrast, in Figh}2

leading to the basic canonical forms we numerically calcu—,[he modes with most energy lie below mode 16, with some
Iate. thg primary frequgncies of the modes. E.xamples.of th%nergy in many of the high-frequency modes. T,his contrast
oscillation of the amplltugf of mod@; (i=7v) is given in o omes stronger in Fig. &, which indicates a contraction
Fig. _1él(a) for £=3.0x10 * and in Fig. 11b) for e=3.0 the modes carrying most energy to lower modes, with
x10"". In both cases, 90% of the initial energy was placedi, - eased, but still relatively small energy in most of the
in mode y=3, as has been done in previous FPU studiespigherfrequency modes. This behavior will be used to guide
Because of the low energies there is little initial diffusion soy,q development of a calculation procedure in the next sec-
the fast frequencyvy, is relatively constant over the short 4,
observation time periods. However, we should note that the
initial conditions used here are significantly different from
those used to obtaing¢4(t). In Table | the mode frequency
shifts are given as functions ef. These are compared with  The ¢* oscillator chain presents some difficulties in
the theoretical estimates using E@3). For y=3, we have analysis that are not present for the FPU chain. For small
from (6) w. =0.124 and usedwy =wy, —Ww, to obtain e.g.,m=0.1, the nonlinear frequency shifts, and therefore the
dwy (num). Using Eq.(13) with w=w_ =0.124 in the de- expected beat frequencies, tend to be large compared to the
nominator we obtaindwy, (w,.). The comparison fom linear mode frequencies and to the differences between them.
=0.1 indicates that the perturbation theory used to obtain EqConsequently, we expect to have a group of low-frequency
(12), and therefore Eq.13), gives reasonable agreement be-modes that are strongly interacting. Fore=0(1), another

0.2+

QM
o

FIG. 11. Q(t) for mode 3, early in time with 90% of the energy
initially in mode 3. (a) £=0.0003,(b) £¢=0.003. The change in
frequency is seen and beats are also obser@ed in arbitrary
units.

IV. THEORETICAL ESTIMATES
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FIG. 12. Three-energy spectra a{;;=0.25, N=128, §y=8
(@ m=0.1, £=0.05(no plateal (b) m=1, £=0.75, near the be-

ginning of the plateauc) same as irfb) near the end of the plateau.

E is in arbitrary units.
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theory, first used if10] for the FPU oscillator chain to esti-
mateT.,, we explore its use for the* chain. Assuming the
energy remains primarily in a group of modes, relatively
small compared to the total number of modes, we differenti-
ate Eq.(11) with respect to angle, to get the rate of change of
the energy in that group. We use the assumption made in
[10], that the phases are randomized in transferring energy
from a driving mode to a set of driven modes, such that the
summation in the nonlinear term gives a quantity propor-
tional to 6C, the square root of the number of couplings.
Assuming energy transfer from a typical modeo some
effective package of modes, of frequeney with indexKk,
whereq=(7k/2N) is an intensive variable running from 0

to 7/2 used for clarity, then

GE_ 28 EE, i
dt N Wy WS,

whereE, is the energy of a typical mode in the driven group,
assumed disjoint from the driving group. In E84), we take
w, to be the frequency of the central mode of the driving
package.

As we observed in describing the basic equations, the
difference between the FPU quartic term and gfequartic
term is a factor consisting of a product of four frequencies.
For a package of initially excited modes with approximately
the same frequency and far not too small, we assume the
beat frequency to have the same scaling as the time average
of the nonlinear frequency shift in EGL3)

{
QB:(_CB

Wy

BEp
(T)' (29

which is similar to the FPU results 48] divided by the
factor w‘;. Again, w,, is taken to be the frequency of the
central mode in the driving groufhis approximate formula
can not be used fom=0 because some frequencies ap-
proach zero abl becomes large The factor{ represents the
reduction from the scaling in E413) due to phase averages
and other factors, and we assug0.1 in numerical calcu-
lations, consistent with such averaging. In E2p), E, is the
total energy in the excited modes. Assuming that only the
first 2y modes have a nonzero energi,(2y), for m

> /N the dispersion relation of the* system starts rela-
tively flat at low-frequency, then has an intermediate region
of more rapidly rising frequency per mode and becomes flat-
ter at high-frequency.

We observe numerically, depending on the energy density,
that there is often spreading from the low-frequency initial
conditions to nearby low-frequency modes, on a time scale
short compared to the equipartition time. It is this self-
consistent package that drives the diffusion to the other
modes. In the following, we determine the self-consistent
size of the driving package by the hypothesis of a local over-

difficulty arises. The beat frequencies can be expected to blep condition of the low-frequency modes that the energy
much smaller, but the low-frequencies are clustered abouwwill spread up to mode 2 for which the linear frequency
w=m, thus giving, again, a strong interaction among neigh-spread ¢w, ) is equal to the beat frequency of Eg5). The
boring modes. Despite the problems in generalizing thénypotheses is tested by comparing the analytic results to the
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numerics. Assuming sufficiently large that all the low-
frequencies in the driving package are givenvby=m, we
expand the dispersion relatig8) to obtainéw, =w,,—mas

277_2 ,y2
= . 26
s (26)
Making the strong assumption
ow =0Qg, (27)

then, by equating Eq$26) to (25), we determine {/N) to
be given by
1/2

{BEp

Z =
N |\ 272m2N

(28)

PHYSICAL REVIEW E66, 026206 (2002

significant part of the transfer. As in the FPU calculation
[10], we assume that the number of mod&snvolved in the
transfer can be determined as a function of the engigin
the driving package by the requirement of fast Arnold diffu-
sion, which, from Eq(2), is
Qp(Ep) = ow. (33

Substituting Eqs(25) and (32) into Eq. (33) determinessk
to be

Sk= ( (34)

1 ) 2{BE,
dw,/dq

3
’7TWy

The number of couplings from a single low-frequency driv-
ing mode of index to the outside resonant set of modes can
be found by inspection of the selection rule: A mogeof

If the value y calculated by the above formula is less thanthe driving package will couple to any pair of modes in the

the initial y, then we can interpret ER8) to mean that over

resonant package, of indickg andk,, if we can find another

short times the package size will be limited to its initial drving mode, of indexy;, such that the selection ru(8) is

value. If Eq.(35) gives a 2y> Sv;,i; then the driving modes
would be expected to grow to the size predicted by [28),

again over a relatively short interval. With this interpretation

satisfied

in mind, assuming that the initial energy in the package i§; js important to notice here that we can satisfy the above

approximated as partitioned evenly among the modes

Ep:2’yEi y (29)

we can calculat&, by substituting Eq(28) into Eq. (29)

2 BN
E :_g" ’B_E.2

p 2 [

% m? (30)

and y/N as a function of; by substitution of Eq(30) into
Eqg. (28

Y_ {BE;

N 72m?2

(31

Note that Eq(31) implies that the number of driving modes
shrinks during the equipartition process. Although the num-
ber of modes containing energy clearly increases, the two

statements are not inconsistent as a minimum energy is re- Eq(h)=
quired for driving other modes by the Arnold diffusion

mechanisni8].

Because of the strong nonlinearity, the energy from th
initial package typically goes from the driving modes to all
other modes by Arnold diffusion. We use the following ar-

gument to determine the numbé&k of modes involved in the
energy transfer: The linear beétv, is calculated using the
dispersion relationv(q) of Eq. (6), whereq= (wk/2N), and

takingdw/dq to be approximately constant over the interval,

dwy,
é\Nkz d_q

B

Here, sk and the effective centar of the resonant package

(32

are to be determined. We have used the linear beat in the
approximation that the modes have very little energy for a

e

selection rule for ank,; andk, if the size 2y of the driving
package is larger than the siz& of the driven package. In
this case, there aresk)? couplings from each driving mode
i to the driven package. For this condition to hold, E&S)
and(33) together with the condition thaty2> sk imply that
the driving modes must havew/dk less than the driven
modes, otherwise the theory must be modified.
SubstitutingsC= 8k with Sk given by Eq.(34) into Eq.
(24) with E,, given by Eq.(30), and rearranging, we have

E;®

8¢%p°

3112
Wqu

Eqdt, (36)

where we have substituted,=m and fqzwgdwq/dq. As
in [10] we make the simplest assumption of diffusive in-
crease in the energy,

(37)

Substituting Eq(37) into Eq. (36), and integrating Eq(36)
with E; going fromE; = (7?m?E/2{BN)Y? to E;=(E/N) on
the left side and going from O toT,,, averaging , over the
whole spectrum

eq:

2
_ = 21312
(fg)=3_(4+m9)™% (39)
and dropping small terms, yields a formula for the dominant
power law,

7T2m6 (4+ m2)3/2
Teq: 12§2 (BE)S (39)
N
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10" , , (28), does not occur. There is not, however, clear evidence
for how the number of driving modes changes during the
NNt evolution ofngs;.

10° A N V. CONCLUSIONS AND DISCUSSION

VN We have examined the times to obtain energy equiparti-
A"t tion in a discretized Klein-Gordon equation with strong quar-
- A TN tic nonlinearity, called thep* oscillator chain. The results,
x both numerically and analytically, are compared to our pre-
10° b _ vious results for the FPU oscillator chain, also with a strong
Lt quartic nonlinearity. The comparison, for this paper, is made
N primarily for energy initially placed in the low-frequency
modes of the linearized systems. Thé oscillator chain is
more complicated than the FPU chain, both because it has a
separate parameter, the linear restoring force of the indi-
'10-2 o 0 70" vidual oscillators, and because the nonlinear forces tend to
&/m? dominate the linear forces for the low-frequency modes. The

) ) . ) extra parameter requires us to examine the behavior in a
FIG. 13. Comparing then ande theoretical scaling with some large parameter space.

m=0(1) numerics. The dominant theoretical value:din® is used For small linear restoring forcen=0.1, of the individual

in Eq. (39 for the theoretical calculation. The numerics are rior oscillators[see Eq.(3) for the Hamiltonia the linear fre-
=1 (plusses m=0.5 (crosses and m=0.25 (triangles. The  , oncies of most modes are similar in thé and FPU
theory s form=1 (solid line), andm=0.25 (dashed ling chains. The numerical calculation Ofq(e), where &
=E/N the energy density of the chain, shows similar behav-
Setting{=0.1, as discussed earlier, we compare B§) to  jor of the two chains. Both have power-law behavior, de-
the numerical results, for 0.28m=1, in Fig. 13, using the pending only one, over a wide range ok, and show
(e/m?) scaling of(39) (s=E/N). We note that the€/m”)  N-dependent transitions at low to values ofT,, that in-
scaling of Eq(39) is not a very good fit to the data, indicat- crease much more strongly with decreasiag i.e., Teq
ing the approximateness of our theoretical model in variousce?* The explanation for the transition, as related to Arnold
respects. However, we stress that E89) makes sense in the (diffusion, has been explored in detail in previous work on the
thermodynamic limit ofN—c, asT., depends only on the FpU chain( [8]) and appears to hold for the* chain, also.
energy density. We also note thalq is a function ofBE,  Nevertheless, even at relatively smai| there are important
as it must be because of an exact symmetry of Hamiltoniagifferences between the two chains, arising from the nonlin-
(3) that allows a scaling of time to be compensated by aearity.
scaling of energy if3E is kept constant. For largerm, the value ofe required to achieve a given
We can also justify the approximations leading to Eq.T, is much larger. For a range of values 0=2B<1, the
(28), by observing that over short times we expetl;  value ofT,qis found to scale aSeq (e/mP) ~ % with p in the
~2yIN. Using this proportionality we have, from E(®8),  range from 2.5 to 3. The valup=3 could be argued as a
the short-time relation scaling of the time with inverse beat frequency which has
that scaling. A calculation off ¢ for m=0(1) predicted

10

e Teq(e/m?) ~3, where the power ofj=3 agreed with the
2{BE scaling found numerically while the power gf=2 was
Net™~| — oo (40) I -
72m2N smaller than the numerical values.

Applying the theory tan=0.1 is less secure than that for
m=0(1), because the average frequency of the driving
agreeing well with the proportionality, found in Fig. 8, for modes varies witle, which induces a rather strong variation
the height of the plateau. in the beat frequency. As the number of driving modes is
If the initial number of modes containing energy is largeruncertain, the average beat frequency is also uncertain, sig-
than the number of modes predicted from E2g), with y nificantly affecting any calculation. Thedependence of fre-
=2 68¥ini and E,=E, thendy is initially larger (and prob-  quencies at smath would tend to decrease the powgras
ably always largerthan they obtained from Eq(28). This  observed for then=0.1 case. However, the details are hard
may be the reason for the change in the power law observetd establish firmly, from the theory.
for the m=0.1 results in Fig. 2. Furthermore, unlike the  We conclude that the general theoretical description of the
higherm case, for which there is a tendency fprto con-  various nonlinear dynamical mechanisms, describing the ap-
tract, as seen in Fig. 10), for small m, the opposite ten- proach to equipartition in the FPU oscillator chain, hold ap-
dency can be seen from Fig. (8 This might mean that the proximately for thep* oscillator chain, providedis not too
contraction of the number of driving modes, implied by Eq.small. Thep* chain has a stronger nonlinearity, starting from
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low-frequency mode initial conditions, which makes anythe theoretical estimates @k (e/mP) 9, for thep andq
analysis for smalm less certain. For large, there is both  powers.

gualitative and quantitative comparisons between numerics

and theoretical estimates to give some confidence in the un- ACKNOWLEDGMENTS
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