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Transitions and time scales to equipartition in oscillator chains: Low-frequency initial conditions
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We study the times to equipartitionTeq in an oscillator chain, which is the discretized Klein-Gordon
equation with a quartic nonlinearity (w4 system!. The numerical results are compared to the Fermi-Pasta-Ulam
~FPU! oscillator chain with quartic nonlinearity~FPU-b system!. For both chains we consider initial energies
in low-frequency modes, of the linear systems. The methods previously developed to estimate the equipartition
times for the FPU-b chain are applied to the more complicatedw4 chain. The results indicate that the methods
are still applicable, but do not give as accurate predictions of the equipartition time or the transitions between
power-law and exponential behavior.
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I. INTRODUCTION

Nonlinear oscillator chains are useful systems to study
foundations of statistical mechanics; in particular to det
mine the transitions and time scales for relaxation from o
or a few modes to equipartition among modes. Beginn
with the famous Fermi-Pasta-Ulam~FPU! study @1,2# there
have been many numerical and theoretical studies of th
phenomena.

The FPU-b system is a linear chain of equal mass
coupled by nonlinear springs with Hamiltonian~for quartic
nonlinearity!
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4. ~1!

Typically, the energy interchange among the ‘‘linearize
system modes for the case of strong springs (b.0) and
either fixed boundariesq05qN1150 or periodicq05qN11
has been studied@3–16#. To numerically study the FPU sys
tem, initial conditions have been used for which all the e
ergy is concentrated in a few modes usually around a l
frequency modeg!N or around a high-frequency modeN
2g(g!N).

Numerical measures of the degree of energy sha
among modes have been developed and we present
measures, together with numerical results, in Sec. III.
energy either in a few low-frequency modes or in a fe
high-frequency modes, we have developed theoretical
scriptions for energy spreading among modes, valid in v
ous energy ranges, which were compared to numerica
sults @8–10#. In earlier works@5,6#, the transition studied
was between weak and strong stochasticity, with differ
power-law behavior in the two regimes. The numerically d
termined transition was related to a theory of overlap
neighboring modes in phase space@4#. Subsequent work
@7–10# focused on the region of weak stochasticity with t
transition between power law and exponentially long tim
scales as the energy density«5E/N of the system is de-
creased. This latter transition is of more importance for
observation of equipartition, as it essentially separates
1063-651X/2002/66~2!/026206~13!/$20.00 66 0262
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servable times from those that are not observable. For
FPU chain, the main mechanisms leading to equipartition
this lower-energy regime are that resonant interaction of f
low-frequency modes, in which a significant portion of th
energy resides, can lead to local superperiod~very low-
frequency! beat oscillations that are stochastic. If beat osc
lations, which increase with energy, are sufficiently fast th
become comparable to frequency differences between h
frequency modes. This results in the Arnold diffusion mech
nism transferring energy to high-frequency modes.

For the FPU-b chain the transition to stochastic local in
teraction, using the four-mode approximation for low
frequency modes, occurs at@8#

R[~N11!
6b

p2
E.1,

whereR is the ratio of nonlinear to linear energy in a pertu
bation Hamiltonian. SinceR}N11, the energy at which this
transition occurs becomes vanishingly small asN→`. The
stochasticity atR.1 corresponds to the appearance of
elliptic-hyperbolic pair of fixed points in a low-frequenc
resonance among the modes. Since the driving frequency
diffusion is associated with the libration frequency of t
resonanceVB , a fundamental time scale for numerical o
servation is@8#

2p

VB
;

1

wg

N

bE
.N2/gbEg ,

where Eg.E if most of the energy is initially in the few
modes taking part of the beat oscillation, and we have
proximated the linear mode frequency for FPU aswg
5pg/N. Using resonant normal form perturbation theory
isolate the most important coupling to the high-frequen
modes, we found that the energy transfer to high-freque
modes is by Arnold diffusion, which depends exponentia
on a frequency ratio as

dE

dt
}exp~2pdwh/2VB!, ~2!
©2002 The American Physical Society06-1
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where dwh is the difference frequency between two hig
frequency modes. WhenVB;dwh , the exponential factor is
of order unity, allowing strong diffusion of energy to high
frequency modes, and equipartition on computationally
servable time scales. Numerically, the transition to obse
able diffusion occurs at a value ofEc'3, for b50.1,
corresponding toVB /dwh'0.3. Since the coupling involve
two high-frequency modes that initially have little energ
the resulting increase in energy is at first exponential,
later follows the usual diffusive scaling@8,9#. The scaling,
with energy density, of the equipartition time forE@Ec has
been found theoretically to beTeq}(N/E)3, which agrees
with numerical computations.

The low-frequency modes of the FPU system, forb.0,
are approximately described by the modified Kortew
deVries~mKdV! equation. An instability of a low-frequenc
soliton mode of the mKdV equation corresponds to the
ponential growth in the FPU system@11#. The instability on-
set corresponds toRs0.6, which is approximately the sam
value as that which produced a separatrix layer in the lo
resonance interaction. This is a necessary rather than s
cient condition for a transition to equipartition, as the solit
theory does not describe the high-frequency modes. H
ever, it does present a physical picture of the process
holds the low-frequency modes together in the absenc
perturbations~coupling to high-frequency modes!. The pro-
cesses that produce nonlinear structures become cr
when considering initial conditions in which energy is plac
in high-frequency modes.

If the energy is initially placed in high-frequency mode
the equipartition process is significantly different from th
starting from low-frequency initial conditions. In this cas
the dynamics is transiently mediated by the formation
unstable nonlinear structures@12–16#. The mode energy is
found to distribute itself first into a number of structure
localized in space, each consisting of a few oscillators, wh
coalesce over time into a single localized structure, a cha
breather~CB!. Over longer times, the CB is found to brea
up, with energy transferred to lower-frequency modes wh
do not have the breather symmetry. A transition with decre
ing initial mode frequency is found such that the CB does
form, as expected from the loss of breather symmetry.
the FPU-b chain, the scaling of CB formation time wit
energy density E/N is found numerically to be
Tb}(E/N)21, and the scaling of equipartition time found
be Teq}(E/N)22 @14,16#. The scaling ofTeq can be pre-
dicted from the argument which postulates stochastic di
sion from high-frequency mode chaotic beat oscillations
the low-frequency modes, similar to that used for equipa
tion from low-frequency modes, given in@10#. The scaling of
the time for the formation of a breather,Tb , can also be
estimated from theory@15,16#.

The mechanisms leading to equipartition are now reas
ably understood for the FPU oscillator chain. However
more complete understanding of the equipartition process
quires a comparison to other coupled nonlinear oscillator
particular system, well suited to such a comparison, is
discretized Klein-Gordon equation, consisting of nonline
02620
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oscillators linearly coupled to each other. For a quartic n
linearity in the potential, the Hamiltonian is given by@17#

H5(
i 51

N F1

2
pi

21
1

2
~qi 112qi !

21
m2

2
qi

21
1

4
bqi

4G , ~3!

which we henceforth call thew4 system.
Recently, there have been a number of studies of the

cretized Klein-Gordon equation, but they have been from
perspective of studying the stability of breathers, which
chosen as initial conditions@18,19#. However, it is clear from
phase-space arguments that an initial condition that is a h
frequency linear mode, that subsequently forms breath
cannot form stable breathers and therefore must ultima
decay. This was recognized in@13,14# for the FPU system
and the processes of formation and decay were studied
earlier study of thew4 model compared numerical results
a transition from slow diffusion~long times to approach eq
uipartition! to fast diffusion ~short times to equipartition!
with numerical results from the FPU model@17#. The only
theory at that time was for the energy required for mo
overlap@4#, which does not consider the more subtle tran
tions and time scales, that occur at lower energy due to b
modes and breather decay, as described above.

In this paper, we investigate thew4 system, comparing the
numerical results to those of the FPU-b chain, using the
theory developed by us for the FPU studies, to underst
the similarities and differences. In particular, we will be co
cerned with the transitions between exponentially slow ti
scales to approach equipartition and time scales governe
power laws. As with the FPU system, we calculate the
ergy density power-law scaling of the equipartition time a
compare with numerical results. In this paper, we treat lo
frequency initial conditions~LFIC!. In a subsequent pape
we will consider high-frequency mode initial conditions. Th
comparisons with our theoretical and numerical work on
FPU system should distinguish between transitions and t
scales that are universal and those that are model depen

II. SOME THEORETICAL CONSIDERATIONS

A useful way of observing the dynamical motion nume
cally, mentioned in the Introduction, is to Fourier transfor
the oscillator coordinates to the normal modes of a ch
containing only the linear restoring forces. This expans
describes the complete nonlinear system well, provided
energy in the linear terms is large compared to the energ
the nonlinear terms. As we shall see, the transforma
works well over the interesting and numerically accessi
energy ranges of the FPU chain, but has a much more lim
range of validity for thew4 chain. The harmonic part of the
Hamiltonian can be put in the form ofN independent norma
modesQk via a canonical transformation, which for fixe
end-point boundary conditions gives

qi5A 2

N11(
k51

N

Qk sinS ikp

N11D , ~4!
6-2
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which holds for both Hamiltonians~1! and ~3!. The above
transformation puts the Hamiltonians in the form

H5 (
k51

N
1

2
~Pk

21wk
2Qk

2!1
b

~8N18! (
i , j ,k,l 51

N

C~ i , j ,k,l !QiQjQkQl , ~5!

with the wk given by

wk5Am214 sin2S pk

2N12D ; ~6!

for the w4 system, and

wk52 sinS pk

2N12D ~7!

for the FPU system. The quartic coefficients for thew4 sys-
tem are given by

C~ i , j ,k,l ![(
P

B~ i 1 j 1k1 l !, ~8!

with P representing the eight permutations of sign ofi , j ,k,l
and the functionB(x) takes the value 1 if the argument
zero,21 if the argument is62(N11), and zero otherwise
In contrast, the coupling for the FPU has the form

C~ i , j ,k,l ![wiwjwkwl(
P

B~ i 1 j 1k1 l !, ~9!

i.e., the nonlinear terms get multiplied by the fact
wiwjwkwl .

From the above, it is apparent that the FPU and thew4

models differ in some significant ways. In the linear freque
cies, there is an extra parameterm in the w4model, which
flattens the low-frequency portion of the dispersion relat
if m is of order one, while the FPU frequencies always s
with nearly linear increments from the valuew15p/N11.
In the quartic terms, from Eq.~9!, we see that the terms i
the FPU model are multiplied by an extra product of fo
frequencies, which is not present in thew4model. This causes
the quarticw4 terms to be much larger for the low-frequen
modes than the corresponding low-frequency modes for
FPU system at the same energy density. To explore th
differences in more detail, we transform to action-angle va
ables,I i ,f i , for the harmonic part, using

Qi5~2I i /wi !
1/2cos~f i !, Pi5~2wiI i !

1/2sin~f i !, ~10!

to obtain the Hamiltonian

H5(
i

wi I i1S b

2N12D (
i , j ,k,l

ang~ i jkl !

3
C~ i , j ,k,l !

Awiwjwkwl

~ I i I j I kI l !
1/2, ~11!
02620
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where ang( i jkl )[cos(fi) cos(fj) cos(fk) cos(fl). The fre-
quency of modei is the derivative of the Hamiltonian with
respect toI i , giving

V i5wi1S b

2N12D (
j ,k,l

ang~ i jkl !

3
C~ i , j ,k,l !

Awiwjwkwl
S I j I kI l

I i
D 1/2

. ~12!

Equations~11! and ~12! differ for the w4 chain, from the
corresponding equations of the FPU chain, by the fac
(wiwjwkwl)

21. Thus, for smallw the nonlinear frequency
shift is much larger forw4. An estimate of the time averag
of the nonlinear frequency shift can be made as follow
Assuming that somedk modes contain energy, and noticin
that the selection rule reduces the number of indices to
summed by one, we find that there are (dk)2 terms that can
contribute to the above sum. After averaging over phases
only nonzero terms are those which have a resonance am
the four angles. The number of such resonances is linea
dk, such that only a group of terms proportional todk actu-
ally contributes. Assuming that the terms are typically of t
same size,wiI i.E/dk, and thedk cancels. With these as
sumptions and taking thewi ’s to have approximately equa
values,dk!N, then Eq.~12! yields

dwNL.
bE

N

1

wg
3

, ~13!

for the time average of the nonlinear frequency shift, who
inverse defines an important time scale.

We now estimate the region of validity of the expansi
by comparing the linear frequencywi to the shift in fre-
quency due to the nonlinearitydwiNL . Since the nonlinear
shift depends on the frequencies of the coupled mod
which are approximated by their linear parts, the expressi
are valid fordwiNL /wi!1. For an initial modeg, Eq. ~13!
predicts

dwgNL

wg
;S bE

N D S 1

wg
D 4

, ~14!

with g a typical mode in thedk packet of modes containing
the energy. This same approximation for the FPU yie
more simply

dwgNL

wg
;S bE

N D . ~15!

The implications of Eqs.~14! and~15! are quite different for
the two models. FordwgNL /wg!1, in the FPU-b system
implies thatbE/N!1. This was assumed in all of our pre
vious work@8–10#. For w4, on the other hand, the conditio
depends explicitly on the the linear frequency range un
consideration. This difference was pointed out in@17#, but
the full implications were not explored. Form!1 and a low-
frequency mode packetpg/N!1, the range of validity of
the normal mode analysis of thew4 chain is much more
6-3
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restrictive. For example, withm50.1 andpg/N;0.1 , a
case treated numerically, we findbE/N,4.031024 for our
expansions to be valid. This region is hard to reach num
cally and may effect the comparison of numerics with a
lytical estimates. This restriction is not severe for large v
ues of m, or for high frequencies wherewg.2 ~with m
small!. Also, the calculations that we use to estimateTeq may
not depend critically on the validity of the expansion for t
initial conditions, because the energy may spread ove
larger number of nearby modes.

Continuing the argument for thew4 model, as developed
in @10# for the FPU model, we might expect that the be
frequencyVB , which is driving the Arnold diffusion from
the low frequency to other modes is related to the nonlin
frequency shift VB;dwgNL . This result was previously
found to hold for the FPU chain, with a numeric factor si
nificantly less than one@8#.

III. NUMERICAL RESULTS

We present numerical results for thew4 oscillator chain,
with selective comparisons to previous FPU results. T
theory that is needed to understand these results, and
parison of theory with numerics will be presented in the f
lowing section.

All of our numerical integrations were performed with
recently developed tenth-order symplectic Runge-Ku
Nystrom integrator@20#, which is faster than previously use
integrators. The high-order integrator can take very la
steps, of about 0.6 of the shortest linear period and still c
serves energy with a precision of 10210 even after integration
times of 1010.

A. Macroscopic quantities

In numerical experiments, the instantaneous values of
linear energiesEi , of the linear modes, where theEi are the
quadratic terms in~5!, i 51, . . . ,N, is usually calculated
Over short times, the instantaneous and average value
nearly the same. The information entropy is defined by

S52(
i 51

N

ei ln ei , ~16!

whereei5Ei /( i
NEi are the normalized instantaneous en

gies. Two normalized measures of equipartition have b
employed. The first employed measure is@5–7,17#

h[
Smax2S~ t !

Smax2S~0!
, ~17!

where Smax5ln(N) ~equipartition!. We see from the above
definition that h51 when S(t)5S(0) and h→0 as S(t)
→Smax, although fluctuations limith to some finite value
@15#. For N large and the initial energy in a few modes,h
does not distinguish between equipartition and a platea
which only some small number of theN modes are occupied
but is well behaved if some fixed fraction of theN initial
02620
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modes are excited. An alternative measure defines the e
tive number of modes sharing energy by@8–10,14,16#

Ne f f5exp~S!, ~18!

which behaves well in the limits. The normalized parame
ne f f[Ne f f /N is related toh, for a single mode initial con-
dition, through

h5
ln~N!2 ln~Ne f f!

ln~N!
. ~19!

We see thath→0 asne f f→1, buth also becomes small asN
becomes large, even ifne f f is significantly less than one. Th
instantaneous value ofne f f does not asymptote to one, due
fluctuations. To calculate the effect of fluctuations we intr
duce a deviationdei from equipartitionei5ē1dei . Substi-
tuting this into Eq.~18!, expanding the logarithm function a
ln(11dei /ē)5dei /ē2(1/2)(dei /ē)2 and performing the sum
mation overi yields

ne f f5
1

N
exp$2Nēln~ ē!2N~dē!2/~2ē!%

5exp$2N~dē!2/~2ē!%. ~20!

Taking ē51/N and making the assumption of normal stat
tics, that for each normal mode (dē)25ē2 ~this is confirmed
by calculations!, we see thatN cancels giving an asymptoti
valuene f f5exp(20.5)50.61. This calculation shows that th
result does not depend on the number of oscillators ifN is
large and also shows why the value is different from un
The same calculation can also be made for oscillators, ca
lating the oscillator energiesEi directly from Eqs.~1! or ~3!
normalizing as for modes, and then using the normaliz
linear oscillator energiesei in Eq. ~16!, one can calculate
Nosc as in Eq.~18!, with nosc5Nosc/N. The resultingnosc
50.61 at equipartition, from Eq.~20!, which is the same as
ne f f .

More accurate calculations have been made separatel
modes and oscillators, including the nonlinear terms in
oscillator calculation, yielding@16#

ne f f50.65, nosc50.74 ~21!

at equipartition. These values have been checked num
cally, giving good agreement@16#. Values ofTeq that have
error bars are due to extrapolation or some other uncerta
A comprehensive statistical analysis has not been perfor
due to the very long times for some runs. Spot checks fo
few cases indicate that the spread from varying initial pha
is not large. We use a logarithmic scale for the increas
time, in natural units of Eq.~3!. The large fluctuations of the
instantaneous values are smoothed by taking the averag
the last five instantaneous values ofne f f , which are evalu-
ated at a rate of 25 points per decade in time@at every integer
value of 25ln(t)#.

We are now in a position to numerically determine t
time scale to equipartition. However, before doing this it
6-4
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useful to find the most appropriate presentation of our d
We concentrate our attention on thew4 chain, but will also
comparew4 results to FPU results. In Fig. 1, taking a co
venient case withb50.1, N5128, m50.1, and«5E/N
50.05, we placed equal energies with random phases in
lowest eight modes and plot the values ofne f f andnosc. For
varying N values, we can either choose a fixed fraction
modes as initial conditions, or a fixed number of mod
whichever we find to better eliminate initial transients. W
have chosenNinit58, unless otherwise specified. In Fig.
the initial value of ne f f58/128 is maintained for a shor
time, then rises continuously, and finally fluctuates about
equipartition value ofne f f.0.65. Similarly nosc, starting
from a higher value since many oscillators have initial e
ergy, also rises continuously to somewhat above the equ
tition value ofnosc.0.74, then settles back at essentially t
same time asne f f reaches 0.65. The time to equipartitio
~first crossing ofne f f50.65) is Teq.23104. In a similar
manner, with the sameN andg, we plot Teq versus« on a
log-log plot in Fig. 2 ~stars!. We use this presentation be
cause, from our experience with the FPU chain, we expe
power-law functionTeq}« 2q, over some parameter rang
which we indeed find. We note two distinct power laws, o
at lower values of« with q;2.5 and one at higher« with
q;1.5.

The slope becomes steeper at the lowest values o«,
which corresponds to a transition to exponential behavior
found for the FPU chain. We will see this exponential var
tion, using another presentation, in Fig. 3. But first, on
same figure, with a particular value of«50.05 andN/16
initial modes, we indicateTeq for N564 ~squares!. These
values lie close to those value forN5128, agreeing with our
expectations, as found for the FPU chain, that, given a fi
coefficient for the nonlinear term,Teq is a function of«,

FIG. 1. ForN5128, m50.1, and«5E/N50.05, ne f f(t) and
nosc(t), showing the saturation att5Teq with ne f f.0.65 andnosc

.0.75. The timet is in natural units and the initial number o
modes 2g58, unless specified otherwise.
02620
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only. However,ne f f(t) takes somewhat different paths to e
uipartition, indicating that there areN-dependent transients
From the values ofTeq for N564, at the lower values of«,
we see that theN564 points break away from theN5128
points to larger values ofTeq with decreasing«. This behav-
ior was found for the FPU, and for that system was und
stood in terms of a critical value of energyEc for which the
transition occurs. If the value ofEc is the same for anyN, as
it is in the FPU system, then the value of«c at which the
transition takes place would vary inversely withN and there-
fore occur at a factor of 2 higher« for N564 than forN
5128. On the same figure, we plot values ofTeq for the FPU

FIG. 2. Teq vs «5E/N on log-log scales withm50.1,N5128
~stars!, N564 ~squares!, indicating power-law behavior indepen
dent ofN except at small«. Comparison with Ref.@17# ~plusses!,
comparison with FPU,N5128 ~crosses!, N5500 ~triangles!.

FIG. 3. Teq on log scale vs 1/« to illustrate exponential behavio
at small«: N5128 ~stars!, N564 ~squares!.
6-5
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JAYME DE LUCA AND ALLAN LICHTENBERG PHYSICAL REVIEW E 66, 026206 ~2002!
chain for N5128 ~crosses! and N5500 ~triangles!. These
results are similar to extrapolations from Fig. 5 in@10#. The
slope hasq;3, as is also found theoretically in that pap
We see that a considerably larger« is required to obtain the
sameTeq . This can be understood qualitatively in terms
the larger nonlinearity at low frequencies for thew4 system
than for the FPU system. The results for the FPU withN
5500, show that over the principal slope, the value ofne f f is
intensive, i.e., not a function ofN separately from«5E/N.
Similarly, we calculated a few values ofTeq(«) for the w4

with N5256,500,1000, and 2000,~not shown! which lay
close to theN5128 values in the figure. Finally, we com
pared our results to values ofTeq reported in Fig. 7 of@17#,
at the samem value of 0.1, but with slightly differentN and
initial conditions~plusses!. The values lie significantly below
our observed values, particularly at the smaller values o«.
We interpret this difference as at least partly due to the us
h, in @17#, rather thanne f f , for determiningTeq , as we have
discussed above.

In Fig. 3, we plotTeq on a log scale versus 1/« ~stars! for
all « values withN5128. If we are in the range in which th
diffusion is exponentially slow~Arnold diffusion!, then from
the scaling in Eq.~2!, with dwh /VB}E21 we expect to ob-
tain a straight line for log(Teq) versus 1/« if N is held con-
stant. This is, indeed, found for four of the values, with
transition between«51023 and 531024. For N5128 and
531024,«,1023, we have 0.0614,E,0.128. This value
is more than a factor of ten lower than the value ofEc.3
found for the FPU chain. In Fig. 3, we also plot~squares! the
values of« for N564. As in Fig. 2, we see the transitio
from exponentialTeq versus 1/« to power-law behavior, with
the transition occurring at a factor of 2 larger« ~a factor of 2
smaller value of 1/« in the figure!.

We have also calculatedTeq with N5128, for m50.025
and m50, for a few values of« on the main slope. The
values ofTeq fall on curves below that form50.1, and with
different slopes, as might be expected from Eq.~6!. For m
50.1, the linear frequency is affected by both the coupl
term, and the linear self-forcing term. For cases in which
want the linear self-forcing term to be small, but sufficien
large to prevent large-N problems, we have takenm50.1, as
was also used in@17#.

If we takem5O(1), thesituation is considerably differ
ent. For this case, the linear frequency for low-frequen
modes is dominated by the term includingm, and the disper-
sion is quite different. This is seen from the frequencies
Eq. ~6!. The expansion procedure for the perturbed frequ
cies given by Eq.~12! is now valid to high energy. Although
the nonlinear frequency shift is small compared to the lin
frequencies, for low-frequency initial conditions, the diffe
ences between linear frequencies are small so that local o
lap is easily achieved. This is easily seen by expanding
taking the difference for neighboring modes to obtain

dwgL.
2

m S p

2ND 2

~2g11! ~22!

and estimating the nonlinear frequency shift as in Eq.~14!
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dwgNL

dwgL
5

2bE

p2m2

N

~2g11!
. ~23!

As in the FPU@8#, from LFIC local overlap is obtained, a
fixed g, proportional tobEN and will generally occur at
high N, even for smallbE. This leads to a rapid spreading o
the energy over some set of low-frequency modes. Howe
as also seen with the FPU, this does not imply equipartit
on power-law times, as diffusion to high-frequency mod
may be strongly impeded. In fact, the values of« for which
equipartition is observed are much higher for this case
typical result is shown in Fig. 4, for«50.75, in which we
plot ne f f(t) andnosc(t). We find a plateau inne f f(t) is rap-
idly obtained. However, this macroscopic calculation do
not tell us which modes contain the energy. The slower p
cesses that can transport energy to high-frequency mo
only manifest themselves on a much longer time scale. H
ever, unlike high-frequency initial conditions, in which th
intermediate time scale indicates the formation of transi
localized structures@14–16#, here, no such structures a
formed, as seen fromnosc(t), which does not drop to a low
value on the intermediate time scale~the indication of
breather formation!.

In Fig. 5, we plotTeq versus« on log-log scales form
51 andN5128 ~pluses! and to confirm the« scaling, also
plot Teq versus« for m51 andN5256 ~stars!. The close
coincidence indicates that the« scaling holds. There is also
time spent on the plateau, before rising toward equipartiti
We also checked the plateau times, again finding the coi
dence. There is no induction period for sufficiently large«.
The disappearance of a transient state with increasing« is
also seen for high-frequency initial conditions in the FP
system@14,16#.

Either because the dynamic range of« is smaller and the
points somewhat more varied, or because a transition has
been reached, there is no clear indication of a change fro
power-law to exponential behavior. There is also a disti
change of the slope of log(Teq) versus log(«) at about«
51.5. This type of transition with increasing« has been
observed for smallm @17# and for the FPU@5,6# and inter-
preted in those references as the onset of a strong ove
condition @4#. The lack of a clear transition between powe
law and exponential behavior is made more apparent by p
ting Teq versus 1/«, on log-linear scale, in Fig. 6. We see th
over the range of« that was accessible, there is no cle
separation between exponential and power-law behavior

A recent numerical study of the scaling to equilibrium
the w4 system was made over roughly similar values
0.03&bE&0.25 but at much smaller values of« since N
was large~typically N58192) @21#. In that study, using vari-
ous methods of estimating the time to equilibrium, but n
measuringTeq as done here, the conclusion was drawn t
the equilibrium time increased exponentially as exp@(bE)2g#
with g'0.3. This would be consistent with our general e
pectations of exponential times, at these low values of«, as
we found for smallm.

We also must check the scaling ofTeq with m. From our
previous results using the FPU chain, we expect that a f
6-6
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TRANSITIONS AND TIME SCALES TO . . . PHYSICAL REVIEW E66, 026206 ~2002!
damental time scale isVB . From Eq. ~13! assumingVB
}wNL , with m primarily determining the low-frequenc
mode frequencies, we might expect to obtain«/m3 scaling,
but the theory does not give this value. In Fig. 7, we plotTeq
versus«/m2.75 for various values ofm; in particular form
51 ~circles!, m50.75 ~stars!, m50.5 ~crosses!, and m
50.25 ~triangles!. We see that these values fit reasona
well on a single curve, with the power ofm chosen to give
the best fit. The scaling of the plateau heightne f f(p) with «
and m can also be obtained from the same plots ofne f f
versust used to obtain Fig. 7. We present the data in Fig

FIG. 4. ne f f(t) andnosc(t) for N5128, m51, «50.75 giving
Teq at ne f f.0.65, but also showing an induction period on a plate
of ne f f . The timet is in natural units.

FIG. 5. Teq vs « on log-log scales withm51: N5128 ~plus-
ses!; N5256 ~stars!; showing power-law behavior over a limite
range of«.
02620
y

,

on a log-log scale ofne f f versus«/m2, finding («/m2)1/2

scaling, where the power ofm was chosen to bring the value
of m close to a universal curve. There is a significant dev
tion of the« scaling at smallne f f which is getting closer to
the initial valuene f f50.062.

In all the above numerics, we have used eight initial lo
frequency modes, with an implicit assumption thatTeq does
not significantly depend on the number of initial mode
which mainly effects short-time transients. This is not e
tirely true, as we find a weak dependence ofTeq on the initial
conditions. The height of the plateau, which is establish
early in time, depends more significantly on the initial co
ditions. We illustrate this in Fig. 9, with the results from tw

u

FIG. 6. Teq on log scale vs 1/«, for N5128, m51.

FIG. 7. Fitting Teq to «/m2.75 on log-log scales form51
~circles!, m50.75 ~stars!, m50.5 ~crosses!, and m50.25 ~tri-
angles!. Fitting to «/m3 gives almost as good a fit.
6-7



al
o
-

d to

in
cil-
16

tion

se

PU
d
of
n

the

f

de

e

hat

ial

s
-

n-

JAYME DE LUCA AND ALLAN LICHTENBERG PHYSICAL REVIEW E 66, 026206 ~2002!
very different initial conditions,g53 andg518, for a typi-
cal case ofm50.5, and«50.06. We findne f f(p) separated
by a factor of about 3, while the values ofTeq are nearly the
same. We also found for a few values atm.1, that there is
increasing deviations from them scaling asm is increased
~but not the« scaling! from that given in Fig. 7.

The comparison ofTeq from w4 with the the results from
FPU show that for the sameTeq the w4 values of« are gen-
erally more than a factor of 4 smaller than the FPU« values
~Fig. 2!. Although we are not studying high-frequency initi
conditions~HFIC! in this paper, we have measured values
Teq when the energy is initially placed in a few high

FIG. 8. Fitting ne f f ~plateau! to «/m2 on log-log scales, form
52 ~circles!, m51 ~plusses!, m50.75 ~stars!, and m50.5
~crosses!.

FIG. 9. Indicating the effect of initial conditions onTeq and
ne f f(p), with m50.5 and«50.062, for two initial conditions with
dg53 anddg518. For these cases, there is little effect of init
conditions onTeq , but a rather strong effect onne f f(p).
02620
f

frequency modes. In Fig. 10, these results are compare
the Teq from the FPU model from@14#. We see the opposite
characteristics from those in Fig. 2, with« larger by approxi-
mately a factor of 4 in thew4 system~diamonds! than in the
FPU system~crosses! for the sameTeq. This result can be
explained by comparing the forms of the nonlinear terms
the two systems. For HFIC, the phases of neighboring os
lators alternate, and thus a quartic term is a factor of
larger for the FPU system, than for thew4 system, which
corresponds to a factor of 4 larger energy. This interpreta
has been confirmed by increasingb by a factor of 16 forw4,
bringing theTeq values in close correspondence with tho
from the FPU system~plusses!. From LFIC, the situation is
reversed, with the nonlinear forces much smaller in the F
system than in thew4 system.@The large spread in the quote
Teq for two points in Fig. 10 is due to an early peaking
ne f f(t).0.65, after which the value fell back and the
climbed again to its final oscillation aboutne f f(t)50.65. The
upper times are probably more reliable, and lie close to
FPU values#.

As we can see by comparing theTeq in Fig. 5 for m51
with the values form50.1, in Fig. 2, the values of« required
to obtain a givenTeq are orders of magnitude higher form
51 than for smallm. Although there is strong overlap o
modes at low frequency, form51, the ratio of the nonlinear
frequency shift of a mode to the linear frequency of the mo
is much smaller form51 than for smallm. The values of the
linear frequencies form51 are the same order of magnitud
as the values of the linear high frequencies for anym, and we
observe, by comparing the results of Fig. 5 with Fig. 10, t
the values of« for LFIC at m51, required to produce a
given Teq are quite similar to the values of« for HFIC for
any m.

FIG. 10. Illustrating that for high-frequency initial condition
the value ofTeq vs « for the w4 chain can be brought into coinci
dence with the FPU chain by choosingb51.6 rather thanb50.1,
with the factor of 16 understood for from the strength of the no
linear term at high-frequencies:w4 ~diamonds!; FPU ~crosses!; w4

with b51.6 ~plusses!.
6-8
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TRANSITIONS AND TIME SCALES TO . . . PHYSICAL REVIEW E66, 026206 ~2002!
B. Microscopic quantities

To understand the underlying physics, we need to lo
more closely at the numerical evolution of more microsco
quantities. To investigate the validity of the approximatio
leading to the basic canonical forms we numerically cal
late the primary frequencies of the modes. Examples of
oscillation of the amplitude of modeQi ( i 5g) is given in
Fig. 11~a! for «53.031024 and in Fig. 11~b! for «53.0
31023. In both cases, 90% of the initial energy was plac
in modeg53, as has been done in previous FPU stud
Because of the low energies there is little initial diffusion
the fast frequencywNL is relatively constant over the sho
observation time periods. However, we should note that
initial conditions used here are significantly different fro
those used to obtainne f f(t). In Table I the mode frequenc
shifts are given as functions of«. These are compared wit
the theoretical estimates using Eq.~13!. For g53, we have
from ~6! wL50.124 and usedwNL5wNL2wL to obtain
dwNL ~num!. Using Eq.~13! with w5wL50.124 in the de-
nominator we obtaindwNL(wL). The comparison form
50.1 indicates that the perturbation theory used to obtain
~12!, and therefore Eq.~13!, gives reasonable agreement b

FIG. 11. Q(t) for mode 3, early in time with 90% of the energ
initially in mode 3. ~a! «50.0003, ~b! «50.003. The change in
frequency is seen and beats are also observed.Q is in arbitrary
units.
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tween numerics and simple theory where it applies~esti-
mated at«&4.1024), but gives too large values ofdwNL
when the nonlinear change of the frequency is signific
compared to the linear frequency. An estimate using a n
linear frequency can be made by solvingdwNL
5bE/NwNL

3 , and is given in the last column. Form50.1, it
is better but lacks full theoretical justification. Beat oscill
tions are also observed, with additional harmonics, but
difficult to interpret. For the case ofm5O(1), thedifficulty
in the expansions do not exist for most values of«, and we
would expect to obtain reasonably good agreement. H
ever, as we see in the second half of the table, the the
considerably underestimates the observed nonlinear
quency shifts, and it is not understood.

Another important microscopic quantity is the mode sp
trum. This gives information as to how energy is transferr
among modes to produce the macroscopicne f f . To illustrate
this we compare the mode spectrum for the case show
Fig. 1, with m50.1 and«50.05 atne f f50.25, in Fig. 12~a!
to spectra for the cases of Fig. 4 withm51 and«50.75, in
Figs. 12~b! and 12~c!, for two times near the beginning an
near the end of the of the plateau, respectively, withne f f
.0.25 at both times. Since the energy on average is sp
among 32 modes (0.253128), the mean energy mode is 1
In Fig. 12~a!, we find the peak energy near this mode, w
considerable spreading above it. In contrast, in Fig. 12~b!,
the modes with most energy lie below mode 16, with so
energy in many of the high-frequency modes. This contr
becomes stronger in Fig. 12~c!, which indicates a contraction
of the modes carrying most energy to lower modes, w
increased, but still relatively small energy in most of t
higher-frequency modes. This behavior will be used to gu
the development of a calculation procedure in the next s
tion.

IV. THEORETICAL ESTIMATES

The w4 oscillator chain presents some difficulties
analysis that are not present for the FPU chain. For smalm,
e.g.,m50.1, the nonlinear frequency shifts, and therefore
expected beat frequencies, tend to be large compared to
linear mode frequencies and to the differences between th
Consequently, we expect to have a group of low-freque
modes that are strongly interacting. Form5O(1), another

TABLE I. Nonlinear frequency shifts.

m50.1
e dwDL(num) dwNL(wL) dwNL(wNL)

3.031024 0.014 0.016 0.012
1.031023 0.033 0.053 0.026
3.031023 0.064 0.158 0.045
1.031022 0.112 0.525 0.076

m51
e dwNL(num) dwNL(wL) dwNL(wNL)

0.25 0.08 0.025 0.025
0.5 0.14 0.05 0.05
1.0 0.19 0.1 0.1
6-9
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JAYME DE LUCA AND ALLAN LICHTENBERG PHYSICAL REVIEW E 66, 026206 ~2002!
difficulty arises. The beat frequencies can be expected to
much smaller, but the low-frequencies are clustered ab
w5m, thus giving, again, a strong interaction among neig
boring modes. Despite the problems in generalizing

FIG. 12. Three-energy spectra atne f f.0.25, N5128, dg58
~a! m50.1, «50.05 ~no plateau!, ~b! m51, «50.75, near the be-
ginning of the plateau,~c! same as in~b! near the end of the plateau
E is in arbitrary units.
02620
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theory, first used in@10# for the FPU oscillator chain to esti
mateTeq , we explore its use for thew4 chain. Assuming the
energy remains primarily in a group of modes, relative
small compared to the total number of modes, we differe
ate Eq.~11! with respect to angle, to get the rate of change
the energy in that group. We use the assumption mad
@10#, that the phases are randomized in transferring ene
from a driving mode to a set of driven modes, such that
summation in the nonlinear term gives a quantity prop
tional to dC, the square root of the number of coupling
Assuming energy transfer from a typical modei to some
effective package of modes, of frequencywq with index k,
whereq5(pk/2N) is an intensive variable running from 0
to p/2 used for clarity, then

dEi

dt
52

2b

N
~dC!

Ei

wg

Eq

wq
2

, ~24!

whereEq is the energy of a typical mode in the driven grou
assumed disjoint from the driving group. In Eq.~24!, we take
wg to be the frequency of the central mode of the drivi
package.

As we observed in describing the basic equations,
difference between the FPU quartic term and thew4 quartic
term is a factor consisting of a product of four frequenci
For a package of initially excited modes with approximate
the same frequency and form not too small, we assume th
beat frequency to have the same scaling as the time ave
of the nonlinear frequency shift in Eq.~13!

VB.S z

wg
3D S bEp

N D , ~25!

which is similar to the FPU results of@8# divided by the
factor wg

4 . Again, wg is taken to be the frequency of th
central mode in the driving group~this approximate formula
can not be used form50 because some frequencies a
proach zero asN becomes large!. The factorz represents the
reduction from the scaling in Eq.~13! due to phase average
and other factors, and we assumez.0.1 in numerical calcu-
lations, consistent with such averaging. In Eq.~25!, Ep is the
total energy in the excited modes. Assuming that only
first 2g modes have a nonzero energy (Ep/2g), for m
.p/N the dispersion relation of thew4 system starts rela
tively flat at low-frequency, then has an intermediate reg
of more rapidly rising frequency per mode and becomes fl
ter at high-frequency.

We observe numerically, depending on the energy den
that there is often spreading from the low-frequency init
conditions to nearby low-frequency modes, on a time sc
short compared to the equipartition time. It is this se
consistent package that drives the diffusion to the ot
modes. In the following, we determine the self-consist
size of the driving package by the hypothesis of a local ov
lap condition of the low-frequency modes that the ene
will spread up to mode 2g for which the linear frequency
spread (dwL) is equal to the beat frequency of Eq.~25!. The
hypotheses is tested by comparing the analytic results to
6-10
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TRANSITIONS AND TIME SCALES TO . . . PHYSICAL REVIEW E66, 026206 ~2002!
numerics. Assuming sufficiently largem that all the low-
frequencies in the driving package are given bywg.m, we
expand the dispersion relation~6! to obtaindwL5w2g2m as

dwL5
2p2g2

mN2
. ~26!

Making the strong assumption

dwL5VB , ~27!

then, by equating Eqs.~26! to ~25!, we determine (g/N) to
be given by

g

N
5S zbEp

2p2m2N
D 1/2

. ~28!

If the valueg calculated by the above formula is less th
the initial g, then we can interpret Eq.~28! to mean that over
short times the package size will be limited to its initi
value. If Eq.~35! gives a 2g.dg init then the driving modes
would be expected to grow to the size predicted by Eq.~28!,
again over a relatively short interval. With this interpretati
in mind, assuming that the initial energy in the package
approximated as partitioned evenly among the modes

Ep52gEi , ~29!

we can calculateEp by substituting Eq.~28! into Eq. ~29!

Ep5
2z

p2

bN

m2
Ei

2 , ~30!

andg/N as a function ofEi by substitution of Eq.~30! into
Eq. ~28!

g

N
5

zbEi

p2m2
. ~31!

Note that Eq.~31! implies that the number of driving mode
shrinks during the equipartition process. Although the nu
ber of modes containing energy clearly increases, the
statements are not inconsistent as a minimum energy is
quired for driving other modes by the Arnold diffusio
mechanism@8#.

Because of the strong nonlinearity, the energy from
initial package typically goes from the driving modes to
other modes by Arnold diffusion. We use the following a
gument to determine the numberdk of modes involved in the
energy transfer: The linear beatdwk is calculated using the
dispersion relationw(q) of Eq. ~6!, whereq5(pk/2N), and
takingdw/dq to be approximately constant over the interv

dwk.S dwq

dq D S pdk

2N D . ~32!

Here,dk and the effective centerq of the resonant packag
are to be determined. We have used the linear beat in
approximation that the modes have very little energy fo
02620
s

-
o
e-

e
l

,

he
a

significant part of the transfer. As in the FPU calculati
@10#, we assume that the number of modesdk involved in the
transfer can be determined as a function of the energyEp in
the driving package by the requirement of fast Arnold diff
sion, which, from Eq.~2!, is

VB~Ep!5dwk . ~33!

Substituting Eqs.~25! and ~32! into Eq. ~33! determinesdk
to be

dk5S 1

dwq /dqD S 2zbEp

pwg
3 D . ~34!

The number of couplings from a single low-frequency dr
ing mode of indexi to the outside resonant set of modes c
be found by inspection of the selection rule: A modeg i of
the driving package will couple to any pair of modes in t
resonant package, of indicesk1 andk2, if we can find another
driving mode, of indexg j , such that the selection rule~8! is
satisfied

g i2g j1k12k250. ~35!

It is important to notice here that we can satisfy the abo
selection rule for anyk1 andk2 if the size 2g of the driving
package is larger than the sizedk of the driven package. In
this case, there are (dk)2 couplings from each driving mode
i to the driven package. For this condition to hold, Eqs.~27!
and~33! together with the condition that 2g.dk imply that
the driving modes must havedw/dk less than the driven
modes, otherwise the theory must be modified.

SubstitutingdC5dk with dk given by Eq.~34! into Eq.
~24! with Ep given by Eq.~30!, and rearranging, we have

2m4
dEi

Ei
3

5S 8z2b3

p3m2f q
D Eqdt, ~36!

where we have substitutedwg5m and f q5wq
2dwq /dq. As

in @10# we make the simplest assumption of diffusive i
crease in the energyEq

Eq~ t !5
E

N

t

Teq
. ~37!

Substituting Eq.~37! into Eq. ~36!, and integrating Eq.~36!
with Ei going fromEi5(p2m2E/2zbN)1/2 to Ei5(E/N) on
the left side andt going from 0 toTeq , averagingf q over the
whole spectrum

^ f q&5
2

3p
~41m2!3/2, ~38!

and dropping small terms, yields a formula for the domina
power law,

Teq5S p2m6

12z2 D ~41m2!3/2

S bE

N D 3 . ~39!
6-11
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JAYME DE LUCA AND ALLAN LICHTENBERG PHYSICAL REVIEW E 66, 026206 ~2002!
Settingz50.1, as discussed earlier, we compare Eq.~39! to
the numerical results, for 0.25<m<1, in Fig. 13, using the
(«/m2) scaling of~39! («5E/N). We note that the («/m2)
scaling of Eq.~39! is not a very good fit to the data, indica
ing the approximateness of our theoretical model in vari
respects. However, we stress that Eq.~39! makes sense in th
thermodynamic limit ofN→`, asTeq depends only on the
energy density«. We also note thatTeq is a function ofbE,
as it must be because of an exact symmetry of Hamilton
~3! that allows a scaling of time to be compensated b
scaling of energy ifbE is kept constant.

We can also justify the approximations leading to E
~28!, by observing that over short times we expectne f f
;2g/N. Using this proportionality we have, from Eq.~28!,
the short-time relation

ne f f;S 2zbE

p2m2N
D 1/2

~40!

agreeing well with the proportionality, found in Fig. 8, fo
the height of the plateau.

If the initial number of modes containing energy is larg
than the number of modes predicted from Eq.~28!, with g
5 1

2 dg init and Ep5E, thendg is initially larger ~and prob-
ably always larger! than theg obtained from Eq.~28!. This
may be the reason for the change in the power law obse
for the m50.1 results in Fig. 2. Furthermore, unlike th
higher m case, for which there is a tendency forg to con-
tract, as seen in Fig. 10~b!, for small m, the opposite ten-
dency can be seen from Fig. 10~a!. This might mean that the
contraction of the number of driving modes, implied by E

FIG. 13. Comparing them and« theoretical scaling with some
m5O(1) numerics. The dominant theoretical value of«/m2 is used
in Eq. ~39! for the theoretical calculation. The numerics are form
51 ~plusses!, m50.5 ~crosses!, and m50.25 ~triangles!. The
theory is form51 ~solid line!, andm50.25 ~dashed line!.
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~28!, does not occur. There is not, however, clear evide
for how the number of driving modes changes during
evolution ofne f f .

V. CONCLUSIONS AND DISCUSSION

We have examined the times to obtain energy equipa
tion in a discretized Klein-Gordon equation with strong qu
tic nonlinearity, called thew4 oscillator chain. The results
both numerically and analytically, are compared to our p
vious results for the FPU oscillator chain, also with a stro
quartic nonlinearity. The comparison, for this paper, is ma
primarily for energy initially placed in the low-frequenc
modes of the linearized systems. Thew4 oscillator chain is
more complicated than the FPU chain, both because it h
separate parameter, the linear restoring force of the in
vidual oscillators, and because the nonlinear forces ten
dominate the linear forces for the low-frequency modes. T
extra parameter requires us to examine the behavior
large parameter space.

For small linear restoring force,m50.1, of the individual
oscillators@see Eq.~3! for the Hamiltonian# the linear fre-
quencies of most modes are similar in thew4 and FPU
chains. The numerical calculation ofTeq(«), where «
5E/N the energy density of the chain, shows similar beh
ior of the two chains. Both have power-law behavior, d
pending only on«, over a wide range of«, and show
N-dependent transitions at low« to values ofTeq that in-
crease much more strongly with decreasing«, i.e., Teq
}ea/«. The explanation for the transition, as related to Arno
diffusion, has been explored in detail in previous work on t
FPU chain~ @8#! and appears to hold for thew4 chain, also.
Nevertheless, even at relatively smallm, there are important
differences between the two chains, arising from the non
earity.

For largerm, the value of« required to achieve a given
Teq is much larger. For a range of values 0.25<m<1, the
value ofTeq is found to scale asTeq}(«/mp)2q with p in the
range from 2.5 to 3. The valuep53 could be argued as
scaling of the time with inverse beat frequency which h
that scaling. A calculation ofTeq for m5O(1) predicted
Teq}(«/m2)23, where the power ofq53 agreed with the«
scaling found numerically while the power ofp52 was
smaller than the numerical values.

Applying the theory tom50.1 is less secure than that fo
m5O(1), because the average frequency of the driv
modes varies with«, which induces a rather strong variatio
in the beat frequency. As the number of driving modes
uncertain, the average beat frequency is also uncertain,
nificantly affecting any calculation. The« dependence of fre-
quencies at smallm would tend to decrease the powerq, as
observed for them50.1 case. However, the details are ha
to establish firmly, from the theory.

We conclude that the general theoretical description of
various nonlinear dynamical mechanisms, describing the
proach to equipartition in the FPU oscillator chain, hold a
proximately for thew4 oscillator chain, providedm is not too
small. Thew4 chain has a stronger nonlinearity, starting fro
6-12
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low-frequency mode initial conditions, which makes a
analysis for smallm less certain. For largem, there is both
qualitative and quantitative comparisons between nume
and theoretical estimates to give some confidence in the
derlying physics. The extra parameter in thew4 chain has
broadened the parameter space that we have studied, m
a complete exploration of parameters more difficult. B
within a limited range of the extra parameter, we have b
able to get reasonable agreement between the numerics
-

02620
cs
n-

ing
t
n

and

the theoretical estimates ofTeq}(«/mp)2q, for the p and q
powers.
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